• A tantárgyról

        • A matematika speciális tudomány, mely részben a többi tudomány által vizsgált, részben pedig a matematika „belső” fejlődéséből, differenciálódásából adódóan létrejött (felfedezett vagy feltalált) rendszereket, struktúrákat, azok absztrakt, közösen meglévő tulajdonságait vizsgálja.

          Régebben a „mennyiség és a tér tudományaként” (a számok és geometriai alakzatok tanaként) határozták meg, a múlt század elejétől kezdve pedig a matematikáról azt tartották, hogy az „a halmazelmélet absztrakt struktúráinak formális logikai szemlélettel és a javarészt erre épülő matematikai jelölésrendszerrel való vizsgálata”.

          Ma már nemcsak az első, hanem a második álláspontot is vitathatónak, túlhaladottnak tartják egyes didaktikai szakemberek. A matematikát nehéz pontosan meghatározni, mibenlétének kérdése még manapság is, sőt manapság különösen, vita tárgya, élő és nem lezárt tudományos probléma, mellyel a matematikafilozófia (a filozófia egyik területe, sőt már-már önálló tudományága) foglalkozik.

          Ezért a következőkben megpróbáljuk ehelyett néhány fontos, megkülönböztető sajátosságát kiemelni, melyek egyike-másika más tudományokban is megtalálható, de így együtt az összes csak a matematikában. A matematika sajátossága elsősorban különleges témaválasztásában, kutatási területeiben és módszereiben, nyelv-és jelölésrendszerében rejlik.


          Egybevágósági transzformációk az euklidészi síkon


          A matematika megkülönböztető sajátosságai

          Magasfokú absztrakció és specializáció

          A legegyszerűbb matematikai fogalmak is, mint a szám vagy a pont fogalma, magasfokú, és történetileg szinte mindig több évszázad, évezred alatt végbemenő absztrakció eredményei. E folyamat során dolgok (tárgyak, fogalmak) egy összességét tekintve elvonatkoztatunk azon tulajdonságoktól, melyek a vizsgálat szempontjából lényegtelenek, és csak bizonyos kiemelt tulajdonságokat veszünk figyelembe.
          Matematikailag egy absztrakció eredményeképp létrejött fogalom azonosítható azon dolgok halmazával, melyek a fogalom körébe tartoznak.

          A matematikában gyakorta előfordul a specializációnak elnevezett fogalomalkotási eljárás. Ez logikailag egy fogalomból részfogalom, halmazelméletileg pedig egy halmazból részhalmaz képzésének felel meg. Így kapjuk például a „kutya” fogalmából a „belga juhászkutya”, a „kémiai elem” fogalmából a „halogénelem”, a „szám” (egész szám) fogalmából a „páros” illetve „páratlan” szám fogalmát

          Sajátos módszerek

          Módszerei szintén igen jellemzőek e tudományra, ezek közül a legfőbbek a matematika logika tudományára alapozott deduktív vagy axiomatikus ismeretszerzés-rendezés (az úgynevezett axiomatikus-deduktív módszer), és (elsősorban a halmazelmélet szimbolikájára, nyelvezetére alapozott) speciális matematikai nyelv, jelölésrendszer.

          Különleges nyelvezet és szimbolika

          Mivel a matematika gyakran olyan fogalmakkal és módszerekkel dolgozik, melyek a „való” életben és más tudományokban csak áttételesen fordulnak elő, szükség volt természetesen egy sajátos szaknyelv, ezen túl pedig egy tömör és a köznyelvi kétértelműségektől mentes szimbólumrendszer, a matematikai nyelv kialakulására. Ez a matematika történeti fejlődése során hosszasan alakult és formálódott: kezdetben a matematikusok is mindent élőszóban és írásos köznyelven fejeztek ki (retorikus matematika korszaka), majd szórövidítéseket kezdtek alkalmazni (elsőként Diofantosz görög matematikus, algebra- és számelméletkutató), az ilyen jelek később egyre inkább elszakadtak köznyelvi jelentésüktől és formájuktól (szinkopált matematika korszaka), és a mai matematikai szimbólumokká (=, gyökjel, integráljel stb.) alakultak (formális matematika korszaka). A matematika minden ágának megvan a maga külön szaknyelve és „nyelvjárása”, de a múlt század közepétől elterjedt halmazelméleti-logikai szemlélet híveinek és az ezzel járó nyelv- és szimbólumhasználatnak hosszú időre sikerült olyan tartalmi és formai egységet teremteniük a matematikában, mely utolérte, sőt túl is szárnyalta az ókori görög matematika ezirányú teljesítményét.


          A matematika tárgya és besorolása

          A matematika által vizsgált rendszerek legtöbbször a természettudományokból származnak, ezen belül is gyakran a fizika tárgyköréből. Szokás néha a matematikát is a természettudományok közé sorolni, de erről a szakemberek -matematikusok, filozófusok, tudománytörténészek stb. véleménye megoszlik.

          Egyesek a matematikát szociális konstrukciónak tartják, abban az értelemben, hogy úgy tekintik, a matematika fogalmai a – Durkheim által a szociológiában bevezetett kifejezést használva – kollektív gondolkodás termékei (lásd erről: Reuben Hersh). Mások a matematika által vizsgált objektumoknak egy külön, az anyagi és társadalmi létezésnél magasabb rendű, de legalábbis azoktól teljesen különböző létezési formát tulajdonítanak (lásd erről Karl Popper filozófus, vagy a modern logika legmegrázóbb eredményeit elérő Kurt Gödel matematikai logikus platonista álláspontját). Sokan pedig, nem ritkán matematikusok, a matematikát inkább művészetnek, mint tudománynak tartják. A matematika besorolása tehát vitatott.

          Annyi bizonyos azonban, hogy a fizikából vagy egyéb alkalmazott tudományból vett témakörökön kívül a matematikusok például gyakran olyan struktúrákkal is foglalkoznak, melyek a matematikán belül nyernek értelmet, nem más tudományterületekről származnak.

          Bővebben a matematikafilozófia címszó alatt.



          A matematika eredete és története

          A matematika tudományának kialakulásával, változásaival, vagyis a matematika történetével a tudománytörténet megfelelő ága, a matematikatörténet foglalkozik.

          A matematika szó a görög nyelvből származik, a μάθημα (máthema) szó jelentése „tudomány, tudás”, a μαθηματικός (mathematikós) pedig azt jelenti, „tudásra vágyik”.

          Gyakori álláspont, hogy történelmileg a matematika legalapvetőbb szabályai – amennyire ez a legkorábbi ismert matematikai tárgyú iratokból (pl. Ahmesz-papirusz) kiderül, gabonaszétosztási, űrmérték-, térfogat- és földterület-mérési, és hasonló egyszerű, a „való életből” vett, élelmezési, kereskedelmi, gazdasági jellegű problémák megoldásából adódik. Ez az állapot jellemző lehetett az ókori keletre. Mások hangsúlyozzák a korai matematika szakrális, vallásokkal, ill. filozófiákkal kapcsolatos jellegét is. Az ókorban, ha nem is mindig a mai teljességgel, de ismert volt rengeteg olyan eredmény (például az összeadás és szorzás fogalma, a törtek, a fontosabb geometriai idomok és több esetben ezek terület- és térfogat-képletei, a π szám közelítése, az algebrai egyenletekhez vezető gondolkodásmód stb.), melyet ma általános iskolákban tanítanak.

          A görög civilizáció felemelkedésével a matematika óriási elméleti fejlődésen ment át anélkül, hogy gyakorlati alkalmazásaitól elfordultak volna. A folyamat az elméleti matematika kibontakozásával, a püthagoreusok számelméleti és Thalész geometriai felfedezéseivel indult (Kr.e. VI. szd.), viszont az egyik legnagyobb görög matematikust, Arkhimédészt az alkalmazott matematika legfontosabb korai alakjának tartjuk. A – mai szóval – irracionális számok püthagoreusok általi felfedezése hatalmas lökést adott a geometriai felfedezéseknek, s e folyamat végül Euklidész híres tankönyvéhez, az Elemekhez vezetett; ugyanakkor a tiszta algebra fejlődését némileg visszavetette. A korszak (vagy annak vége) fontos és híres, megoldhatatlannak bizonyult problémái a kockakettőzés és a körnégyszögesítés, a korszak eredményei közt van még a kúpszeletek felfedezése.

          E fényesként számon tartott korszak azzal ért véget, hogy a római civilizáció (gyakorta erőszakos módon) rátelepedett a görögre, és megszerezte az akkori művelt világ feletti uralmat. A matematika szempontjából a mediterrán római és az azt követő kontinentális korai keresztény civilizációt (kb. a reneszánsz idejéig) a stagnálás, ha nem a hanyatlás korszakának szokás tekinteni. Egy fontos kivétel azért akad: a skolasztikus keresztény műveltségben fontos szerepet kapott a logika. A korszak fontos lépése volt, hogy megkezdődött a negatív számok felfedezése és sok vitát kiváltó elismerése, illetve a római helyett az arab számírás legalább ennyi vitát kiváltó bevezetése.

          Ha ezzel egyidőben keletebbre tekintünk, ott a helyzet kevésbé volt „rossz”: az arab, indiai és kínai matematika ebben az időben is virágzott, noha új felfedezések és más egyebek tekintetében egyik sem mérhető a görögökéhez. Az arabokat a geometrizáló görögökkel ellentétben inkább az algebra érdekelte, e tudományt magas szinten művelték.

          Az európaiak önálló új eredményeket csak a reneszánsz idején értek el ismét: fontos probléma a harmadfokú egyenletek megoldása (ami a komplex számok fogalmának kialakulásához vezetett). A korszakban az ókori eredmények egy részét és általában az egész ókori kultúrát újrafelfedezték. A reneszánsz festők a perspektíva felfedezésével és vizsgálatával a tér olyan modelljét alkotják, mely a tizenkilencedik században alapja lesz a projektív geometria kialakulásának.

          Az európai matematika lassan ismét virágzásnak indult, a legfontosabb és legismertebb tudósok, Pierre Fermat, Rene Descartes,Blaise Pascal, Gottfried Wilhelm Leibniz, Isaac Newton, Leonhard Euler, Carl Friedrich Gauss és mások közreműködése által egészen a legújebb korig. A tizenkilencedik században óriási áttörést jelentett Georg Cantor halmazelmélete, mely alapjaiban változtatta meg a matematika arculatát, és a kutatás főirányát ismét az igen elvont elméleti síkra terelte. A huszadik században több évezredes, évszázados probléma oldódott meg (nemcsak az ókori kockakettőzés, körnégyszögesítés, és szögharmadolás, de pl. a Fermat-sejtés kérdése, vagy a valószínűség fogalmának matematikai megalapozása is). A huszadik századi matematika legfontosabb felfedezésének mégis a számítástechnika elméleti alapjainak kialakulását tarthatjuk (ebben kulcsszerepe volt a magyar származású Neumann Jánosnak), mely több elemző szerint egy új civilizációtípus, az információs társadalom kialakulásához fog vezetni.

          Az emberiség történelme során matematika még tiszta formájában is mindig megtalálta fontos alkalmazásait, sőt sokszor a legnagyobb matematikai felfedezések természettudományos, elsősorban fizikai problémáknak és motivációnak köszönhetőek. A „tiszta”, általános iskolai szintet meghaladó matematika jelentősége a huszadik században (az ún. szputnyik-sokk után) különösen felértékelődött a nyugati civilizációban, és ennek eredményei máig érezhetőek a matematika oktatásában. Bár a hidegháború hatása csökkenni látszik, jelenleg az informatikai eszközök rendkívül gyors, a mindennapi életre is jelentős hatást gyakorló fejlődése, amely folyamatnak komoly matematikai alapjai vannak, továbbra is magával hozza a matematika művelésének és oktatásának kiemelt szerepét, fontosságát. Az UNESCO által is elismerten a matematika, az anyanyelvi műveltség melletti másik tényezőként, mindenfajta műveltség egyik alappillére.



          Fermat-féle spirál

          A matematika részterületekre osztása

          A matematikát a szakemberek többé-kevéssé egymással megegyezésben a lentebb felsorolt nagyobb részterületekre, tudományágakra szokták osztani. A főbb tudományágak nevei általában többé-kevésbé megfelelnek a legtöbb magyar egyetem matematikai tanszékei, tanszékcsoportjai elnevezéseinek. Különféle szerzők műveiben találhatóak felosztásbeli eltérések (különösen a diszkrét matematika, az operációkutatás, a numerikus módszerek matematikája, illetve a matematika frissebb ágai – számítógéptudomány – elkülönítésében, besorolásában), de Magyarországon általában elfogadottnak tartható a következő felosztás:

          Matematikai logika

          A klasszikus (kétértékű) matematikai logika feladata azoknak a módszereknek az elemzése, melyeket a matematikusok a bizonyításaik, érveléseik során használhatnak. Fő ágai a kijelentéslogika, a bizonyításelmélet, a modellelmélet. A matematikai logikának ezen és a matematikán kívül fő alkalmazási területe az informatika, illetve az elméleti fizika (nem-klasszikus logikák).

          Halmazelmélet

          A halmazelmélet (a matematikai logikával együtt) az az alapelmélet, amely a matematika keretét, nyelvét és alapvető szemléletét adja. Minden matematikai objektum végső soron valamilyen halmaz (esetleg osztály), sokaság. Speciális halmazok a relációk, speciális relációk a függvények; speciális függvények az elemrendszerek és halmazrendszerek. A halmazelméletnek mint keretelméletnek lezárása a matematikai struktúra fogalma, és a rá épülő struktúraelmélet: ez lényegében egy halmaz és egy felette értelmezett, azaz e halmaz részhalmazaiból álló halmazrendszer. E halmazrendszerre különféle előírásokat adhatunk, hogy milyen legyen, eszerint lehet a matematikai struktúrák fogalmát relációs, algebrai, topologikus, vagy kombinatorikus struktúrákra osztani.

           

          A halmazelmélet azonban nem pusztán matematikai keretelmélet, hanem önálló ágai is vannak, pl. kombinatorikus halmazelmélet, a belső modellek elmélete, a nagyszámosságok elmélete, leíró halmazelmélet.

          Lásd még halmazelmélet és struktúraelmélet.


          Halmazok metszetei

          Algebra

          A matematikai műveletek elvont tanulmányozása. Ágai a klasszikus (~elemi), az absztrakt, a lineáris és az univerzális algebra.

          Számelmélet

          A számelmélet (aritmetika)matematika egy tudományága, mely eredetileg a természetes számok illetve az egész számok oszthatósági tulajdonságait vizsgálta. Az egész számok számelméleti tulajdonságai vizsgálhatóak egészen elemi eszközökkel is (elemi számelmélet), de a felsőbb matematika eszköztára (komplex függvényanalízis) segítségével is (analitikus számelmélet). Az egész számok körében felvetődő bizonyos kérdések tanulmányozása vezetett a számelmélet problémáinak és fogalmainak gyűrűkre vonatkozó kiterjesztéséhez, a gyűrűk (szám)elméletét algebrai számelméletnek nevezzük.

          Geometria

          A geometriamatematika térbeli törvényszerűségek, összefüggések leírásából kialakult ága (maga a geometria szó görögül eredetileg földmérést jelentett). Fő ágai: a projektív, az ábrázoló, az analitikus, és a differenciálgeometria, minden ágon tárgyalható az euklideszi, ill. nemeuklideszi geometriák szemlélete szerint.

          Analízis

          (valós, komplex, funkcionál-, Fourier-, numerikus)

          Topológia

          (leíró, kombinatorikus, általános)

          Véges és/vagy diszkrét matematika

          (kombinatorika, gráfelmélet, véges és diszkrét geometriák, játékelmélet, kombinatorikus számelmélet, „kvantum”-matematika?)

          Valószínűség-számítás

          A valószínűség-számítás olyan jelenségekkel foglalkozik, amelyek lényegében azonos körülmények között tetszőlegesen sokszor megismételhetők, de kimenetelüket a rögzített lényeges tényezőkön kívül sok más tényező is befolyásolja.

          Számítógéptudomány

          A számítógép-tudomány (computer science) a matematika egyik igen fiatal tudományága, amely az információfeldolgozó gépek (pl. számítógépek) tervezésének és működtetésének elméleti, matematikai alapjaival foglalkozik. Némileg elnagyoltan az algoritmusok általános elméletének is nevezhető.

          Sok lehetséges alága még nem differenciálódott eléggé ahhoz, hogy egy általánosan elfogadottnak tekinthető felosztást kielégítő biztonsággal meg lehessen állapítani. Főbb területek és fogalmak: algoritmusok, nyelvek, absztrakt automaták, számítási bonyolultságelmélet, kommunikációs bonyolultságelmélet.



          További infók: http://hu.wikipedia.org/wiki/Matematika